Mangrove forests, also called mangrove swamps, mangrove thickets or mangals, are productive that occur in coastal . Mangrove forests grow mainly at tropical and subtropical latitudes because cannot withstand freezing temperatures. There are about 80 different species of mangroves, all of which grow in areas with low-oxygen soil, where slow-moving waters allow fine sediments to accumulate. What is a mangrove forest? National Ocean Service, NOAA. Updated: 25 March 2021. Retrieved: 4 October 2021.
Many mangrove forests can be recognised by their dense tangle of prop roots that make the trees appear to be standing on stilts above the water. This tangle of roots allows the trees to handle the daily rise and fall of tides, as most mangroves get flooded at least twice per day. The roots slow the movement of tidal waters, causing sediments to settle out of the water and build up the muddy bottom. Mangrove forests stabilise the coastline, reducing erosion from , currents, waves, and tides. The intricate root system of mangroves also makes these forests attractive to fish and other organisms seeking food and shelter from predators.
Mangrove forests live at the interface between the land, the ocean, and the atmosphere, and are centres for the flow of energy and matter between these systems. They have attracted much research interest because of the various ecological functions of the mangrove ecosystems, including runoff and flood prevention, storage and recycling of nutrients and wastes, cultivation and energy conversion. The forests are major blue carbon systems, storing considerable amounts of carbon in , thus becoming important regulators of climate change. Marine microorganisms are key parts of these mangrove ecosystems. However, much remains to be discovered about how mangrove microbiomes contribute to high ecosystem productivity and efficient cycling of elements.
The main contribution of mangroves to the larger ecosystem comes from Plant litter from the trees, which is then decomposed by Herbivore. Bacteria and protozoans colonise the plant litter and break it down chemically into , minerals, carbon dioxide, and Metabolic waste. The Intertidal zone existence to which these trees are adapted represents the major limitation to the number of species able to thrive in their habitat. High tide brings in salt water, and when the tide recedes, solar evaporation of the seawater in the soil leads to further increases in salinity. The return of tide can flush out these soils, bringing them back to salinity levels comparable to that of seawater. At low tide, organisms are exposed to increases in temperature and reduced moisture before being then cooled and flooded by the tide. Thus, for a plant to survive in this environment, it must tolerate broad ranges of salinity, temperature, and moisture, as well as several other key environmental factors—thus only a select few species make up the mangrove tree community.
A mangrove swamp typically features only a small number of tree species. It is not uncommon for a mangrove forest in the Caribbean to feature only three or four tree species. For comparison, a tropical rainforest biome may contain thousands of tree species, but this is not to say mangrove forests lack diversity. Though the trees are few in species, the ecosystem that these trees create provides a habitat for a great variety of other species, including as many as 174 species of marine megafauna.
Mangrove plants require a number of physiological adaptations to overcome the problems of low environmental oxygen levels, high salinity, and frequent tidal flooding. Each species has its own solutions to these problems; this may be the primary reason why, on some shorelines, mangrove tree species show distinct zonation. Small environmental variations within a mangal may lead to greatly differing methods for coping with the environment. Therefore, the mix of species is partly determined by the tolerances of individual species to physical conditions, such as tidal flooding and salinity, but may also be influenced by other factors, such as crabs preying on plant seedlings.
Once established, mangrove roots provide an oyster habitat and slow water flow, thereby enhancing sediment deposition in areas where it is already occurring. The fine, Anoxic waters sediments under mangroves act as sinks for a variety of Heavy metals which colloidal particles in the sediments have concentrated from the water. Mangrove removal disturbs these underlying sediments, often creating problems of trace metal contamination of seawater and organisms of the area.
Mangrove swamps protect coastal areas from erosion, storm surge (especially during ), and . They limit high-energy wave erosion mainly during events such as storm surges and tsunamis. The mangroves' massive root systems are efficient at dissipating wave energy. Likewise, they slow down tidal water enough so that its sediment is deposited as the tide comes in, leaving all except fine particles when the tide ebbs. In this way, mangroves build their environments. Because of the uniqueness of mangrove ecosystems and the protection against erosion they provide, they are often the object of conservation programs, including national biodiversity action plans.
[[File:Map Halophytes.png|thumb|upright=2|Mangroves dominate in tropical regions and salt marshes in temperate regions
]]
Mangroves can be found in 118 countries and territories in the tropical and subtropical regions of the world. The largest percentage of mangroves is found between the 5° N and 5° S latitudes. Approximately 75% of world's mangroves are found in just 15 countries. Estimates of mangrove area based on remote sensing and global data tend to be lower than estimates based on literature and surveys for comparable periods.
In 2018, the Global Mangrove Watch Initiative released a global baseline based on remote sensing and global data for 2010. They estimated the total mangrove forest area of the world as of 2010 at , spanning 118 countries and territories. Following the conventions for identifying geographic regions from the Ramsar Convention on Wetlands, researchers reported that Asia has the largest share (38.7%) of the world's mangroves, followed by Latin America and the Caribbean (20.3%), Africa (20.0%), Oceania (11.9%), and Northern America (8.4%).
The Sundarbans is intersected by a complex network of tidal waterways, and small islands of salt-tolerant mangrove forests. The interconnected network of waterways makes almost every portion of the forest accessible by boat. The area is known as an important habitat for the endangered Bengal tiger, as well as numerous fauna including species of birds, chital, and snakes. The fertile soils of the delta have been subject to intensive human use for centuries, and the ecoregion has been mostly converted to intensive agriculture, with few enclaves of forest remaining. Additionally, the Sundarbans serves a crucial function as a protective barrier for millions of inhabitants against floods that result from .
Four protected areas in the Sundarbans are listed as UNESCO World Heritage Sites. Despite these protections, the Indian Sundarbans were assessed as endangered in 2020 under the IUCN Red List of Ecosystems framework. There is a consistent pattern of depleted biodiversity or loss of species and the ecological quality of the forest is declining.
In Puerto Rico, the red, white, and black mangroves occupy different ecological niches and have slightly different chemical compositions, so the carbon content varies between the species, as well between the different tissues of the plant (e.g., leaf matter versus roots). There is a clear succession of these three trees from the lower elevations, which are dominated by red mangroves, to farther inland with a higher concentration of white mangroves.
Mangrove forests are an important part of the cycling and storage of carbon in tropical coastal ecosystems. Knowing this, scientists seek to reconstruct the environment and investigate changes to the coastal ecosystem over thousands of years using sediment cores. However, an additional complication is the imported marine organic matter that also gets deposited in the sediment through the tidal flushing of mangrove forests.
Mangrove forests can decay into peat deposits because of fungal and bacterial processes as well as by the action of . It becomes peat in good Geochemistry, sedimentary, and Tectonics conditions. The nature of these deposits depends on the environment and the types of mangroves involved. Termites process fallen leaf litter, root systems and wood from mangroves into peat to build their nests. Termites stabilise the chemistry of this peat and represent approximately 2% of above ground carbon storage in mangroves. As the nests are buried over time this carbon is stored in the sediment, and the carbon cycle continues.
Mangroves are an important source of blue carbon. Globally, mangroves stored of carbon in 2012. Two percent of global mangrove carbon was lost between 2000 and 2012, equivalent to a maximum potential of of CO2 emissions. Globally, mangroves have been shown to provide measurable economic protections to coastal communities affected by tropical storms.
Among coastal ecosystems, mangrove forests are of great importance as they account for three quarters of the tropical coastline and provide different ecosystem services.
Bioturbation by macrofauna affect nitrogen availability and multiple nitrogen related microbial processes through sediment reworking, burrow construction and bioirrigation, feeding and excretion. Macrofauna mix old and fresh organic matter, extend Anoxic waters sediment interfaces, increase the availability of energy-yielding electron acceptors and increase nitrogen turnover via direct excretion. Thus, macrofauna may alleviate nitrogen limitation by priming the remineralisation of refractory nitrogen (that is, the nitrogen that can't be biologically decomposed), reducing plant-microbe competition. Such activity ultimately promotes nitrogen recycling, plant assimilation and high nitrogen retention, as well as favours its loss by stimulating coupled nitrification and denitrification.
Mangrove sediments are highly bioturbated by Decapoda such as crabs. Crab populations continuously rework sediment by constructing burrows, creating new niches, transporting or selectively grazing on sediment microbial communities. In addition, crabs can affect organic matter turnover by assimilating leaves and producing finely fragmented faeces, or by carrying them into their burrows. Therefore, crabs are considered important ecosystem engineers shaping biogeochemical processes in intertidal muddy banks of mangroves. In contrast to burrowing polychaetes or amphipods, the abundant Ocipodid crabs, mainly represented by fiddler crabs, do not permanently ventilate their burrows. These crabs may temporarily leave their burrows for surface activities, or otherwise plug their burrow entrance during tidal inundation in order to trap air. A recent study showed that these crabs can be associated with a diverse microbial community, either on their carapace or in their gut.
The exoskeleton of living animals, such as shells or carapaces, offers a habitat for microbial biofilms which are actively involved in different N-cycling pathways such as nitrification, denitrification and dissimilatory nitrate reduction to ammonium (DNRA). Colonizing the carapace of crabs may be advantageous for specific bacteria, because of host activities such as respiration, excretion, feeding and horizontal and vertical migrations. However, the ecological interactions between fiddler crabs and bacteria, their regulation and significance as well as their implications at scales spanning from the single individual to the ecosystem are not well understood.
The outwelling hypothesis argues that export of locally derived POC and DOC is an important ecosystem function of mangroves, which drives detrital based in adjacent coastal habitats.Odum, E.P. (1968) "A research challenge: evaluating the productivity of coastal and estuarine water". In: Proceedings of the second sea grant conference, pages 63-64. University of Rhode Island.Odum, W.E. and Heald, E.J. (1972) ""Trophic analyses of an estuarine mangrove community". Bulletin of Marine Science, 22(3): 671-738. Export of mangrove carbon has been estimated to make a significant trophic contribution to adjacent ecosystems. The theory of outwelling is supported by mass balance evaluations that show the amount of carbon fixed by mangroves normally greatly exceeds the amount stored within the forest,
In the 1990s, global estimates could account for 48% of the total global mangrove primary production of 218 ± 72 million tons C yr−1 (see diagram on the right). By incorporating information on carbon burial, efflux and carbon outwelled as leaf litter, POC and DOC, the remaining 52% was thought outwelled as DIC, though there was insufficient data to confirm this. More recent assessments of DIC export at two sites in Australia supported the estimates of Bouillon et al. in 2008, although in 2014 Alongi suggested that only 40% of NPP was exported as DIC.
In addition to species variation, different environmental conditions can also affect the nitrogen assimilation rates in mangrove plants. Because Chloride can reduce protein synthesis and nitrogen assimilation, soil Groundwater salinity appears to be a negative factor that significantly alters the nitrogen uptake rates of mangrove plants.
Shrimp farming causes approximately a quarter of the destruction of mangrove forests.Botkin, D. and E. Keller (2003) Environmental Science: Earth as a living planet (p.2) John Wiley & Sons. Likewise, the 2010 update of the World Mangrove Atlas indicated that approximately one fifth of the world's mangrove ecosystems have been lost since 1980, although this rapid loss rate appears to have decreased since 2000 with global losses estimated at between 0.16% and 0.39% annually between 2000 and 2012. Despite global loss rates decreasing since 2000, Southeast Asia remains an area of concern with loss rates between 3.6% and 8.1% between 2000 and 2012. By far the most damaging form of shrimp farming is when a closed ponds system (non-integrated multi-trophic aquaculture) is used, as these require destruction of a large part of the mangrove, and use antibiotics and disinfectants to suppress diseases that occur in this system, and which may also leak into the surrounding environment. Far less damage occurs when integrated mangrove-shrimp aquaculture is used, as this is connected to the sea and subjected to the tides, and less diseases occur, and as far less mangrove is destroyed for it.
Grassroots efforts to protect mangroves from development and from citizens cutting down the mangroves for Charcoal kiln,Charcoal is used as a cheap source of energy in developing countries for cooking purposes cooking, heating and as a building material are becoming more popular. are distributed by many non-government organizations as a low-cost alternative to wood and charcoal stoves. These may help in reducing the demand for charcoal.
Mangroves have been reported to be able to help buffer against tsunami, cyclones, and other storms, and as such may be considered a flagship system for ecosystem-based adaptation to the impacts of climate change. One village in Tamil Nadu was protected from tsunami destruction—the villagers in Naluvedapathy planted 80,244 saplings to get into the Guinness Book of World Records. This created a kilometre-wide belt of trees of various varieties. When the 2004 tsunami struck, much of the land around the village was flooded, but the village suffered minimal damage.
Like seagrass, mangrove trees transport oxygen to roots of , reduce sulfide concentrations, and alter microbial communities. Dissolved oxygen is more readily consumed in the interior of the mangrove forest. Anthropogenic inputs may push the limits of survival in many mangrove microhabitats. For example, shrimp ponds constructed in mangrove forests are considered the greatest anthropogenic threat to mangrove ecosystems. These shrimp ponds reduce estuary circulation and water quality which leads to the promotion of Diel cycle hypoxia. When the quality of the water degrades, the shrimp ponds are quickly abandoned leaving massive amounts of wastewater. This is a major source of water pollution that promotes ocean deoxygenation in the adjacent habitats.
Due to these frequent hypoxic conditions, the water does not provide habitats to fish. When exposed to extreme hypoxia, ecosystem function can completely collapse. Extreme deoxygenation will affect the local fish populations, which are an essential food source. The environmental costs of shrimp farms in the mangrove forests grossly outweigh the economic benefits of them. Cessation of shrimp production and restoration of these areas reduce eutrophication and anthropogenic hypoxia.
The Manzanar Mangrove Initiative is an ongoing experiment in Arkiko, Eritrea, part of the Manzanar Project founded by Gordon H. Sato, establishing new mangrove plantations on the coastal . Initial plantings failed, but observation of the areas where mangroves did survive by themselves led to the conclusion that nutrients in water flow from inland were important to the health of the mangroves. Trials with the Eritrean Ministry of Fisheries followed, and a planting system was designed to provide the nitrogen, phosphorus, and iron missing from seawater.
The propagules are planted inside a reused galvanized steel can with the bottom knocked out; a small piece of iron and a pierced plastic bag with fertilizer containing nitrogen and phosphorus are buried with the propagule. , after six years of planting, 700,000 mangroves are growing; providing stock feed for sheep and habitat for oysters, crabs, other bivalves, and fish.
Another method of restoring mangroves is by using quadcopters (which are able to carry and deposit seed pods). According to Irina Fedorenko, an amount of work equivalent to weeks of planting using traditional methods can be done by a drone in days, and at a fraction of the cost.
Seventy percent of mangrove forests have been lost in Java, Indonesia. Mangroves formerly protected the island's coastal land from flooding and erosion. Wetlands International, an NGC based in the Netherlands, in collaboration with nine villages in Demak Regency where lands and homes had been flooded, began reviving mangrove forests in Java. Wetlands International introduced the idea of developing tropical versions of techniques traditionally used by the Dutch to catch sediment in North Sea coastal salt marshes. Originally, the villagers constructed a sea barrier by hammering two rows of vertical bamboo poles into the seabed and filling the gaps with brushwood held in place with netting. Later the bamboo was replaced by PVC pipes filled with concrete. As sediment gets deposited around the brushwood, it serves to catch floating mangrove seeds and provide them with a stable base to germinate, take root and regrow. This creates a green belt of protection around the islands. As the mangroves mature, more sediment is held in the catchment area; the process is repeated until a mangrove forest has been restored. Eventually the protective structures will not be needed. By late 2018, of brushwood barriers along the coastline had been completed.
A concern over reforestation is that although it supports increases in mangrove area it may actually result in a decrease in global mangrove functionality and poor restoration processes may result in longer term depletion of the mangrove resource.
Instead, the assessment showed, between 1980 and 2010, under of mangroves had been cleared, although clearing of mangroves near Belize's main coastal settlements (e.g. Belize City and San Pedro) was relatively high. The rate of loss of Belize's mangroves—at 0.07% per year between 1980 and 2010—was much lower than Belize's overall rate of forest clearing (0.6% per year in the same period). These findings can also be interpreted to indicate Belize's mangrove regulations (under the nation's) have largely been effective. Nevertheless, the need to protect Belize's mangroves is imperative, as a 2009 study by the World Resources Institute (WRI) indicates the ecosystems contribute to million per year to Belize's national economy.
From 1990, in Tanzania, Adelaida K. Semesi led aresearch programme which resulted in Tanzania being one of the first countries to have an environmental management plan for mangroves. Nicknamed "mama mikoko" ("mama mangroves" in Swahili), Semesi also was a Council Member for the International Society for Mangrove Ecosystems.
In May 2019, ORNL DAAC News announced that NASA's Carbon Monitoring System (CMS), using new satellite-based maps of global mangrove forests across 116 countries, had created a new dataset to characterize the "distribution, biomass, and canopy height of mangrove-forested wetlands". Mangrove forests move carbon dioxide "from the atmosphere into long-term storage" in greater quantities than other forests, making them "among the planet's best carbon scrubbers" according to a NASA-led study.
National and international studies
See also
External links
|
|